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ABSTRACT

Recent advancements in machine learning (ML) and artificial intelligence (Al) technologies provide an
opportunity for leveraging data-driven algorithms to predict future nuclear power plant (NPP) operating
conditions by using recorded plant process data. Successfully implementing these models can lead to
cost-reducing, conditioned-based predictive maintenance through optimized maintenance schedules and a
reduction of unnecessary maintenance activities. This report discusses the verification and validation of
short-term forecasting processes (i.e., data cleaning, feature selection, model optimization, and
forecasting) developed in previous reports. The verification and validation (V&V) process demonstrates
the expected precision and accuracy when the ML model encounters new datasets from different systems.
Shapley additive explanations were used as the primary means of feature selection across these different
data set. Individual models were trained for each data set, then validated through a cross-validation
procedure. In this report, two different ML models were tasked to predict variables from three different
plant process data sets with varying prediction horizons. The results indicate that support vector
regression (SVR) outperformed long short-term memory (LSTM) neural networks in regard to each data
set and each prediction horizon in this study, but further tuning and optimization could improve long
short-term memory results. However, each forecasting model showed reduced performance as the
prediction horizon was extended from 1 hour to 1 day ahead. Research is ongoing to evaluate the optimal
input variable space, which is based on a given set of process parameters, to further improve forecasting
accuracy.
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1 INTRODUCTION

Nuclear power is the single largest contributor of non-greenhouse-gas-emitting electric power
generation in the United States, therefore it is imperative to ensure its continued operation [1]. But despite
excellent safety records, premature closures in the nuclear industry have occurred due to economic
concerns. The largest cost to legacy light-water plants are the operating and maintenance (O&M) costs.
The overall goal of the project is to develop and demonstrate predictive maintenance using online
monitoring of critical systems. By predicting a component’s condition in the future, maintenance can be
scheduled and performed in a timely manner, leading to a reduction in maintenance costs associated with
unnecessary maintenance, parts and labor, and unplanned, forced, or extended outages.

Nuclear power plants (NPP) record large volumes of heterogenous data from various equipment and
systems. This data typically includes plant process parameters, maintenance records, technical logs,
online monitoring data, and equipment failure data. NPP data in conjunction with machine learning (ML)
and artificial intelligence (Al) technologies can leverage this data to provide actionable information on
future conditions of critical equipment and systems. The feature selection and forecasting methodologies
of these techniques should be generalizable to ensure the most accurate and consistent calculations when
applied to data sets. The developed models and methodologies should then be validated using an
independent data set to build trust in the applicability of these models and methodologies in new
environments.

This report is the latest in a series of documents detailing online monitoring, wireless communication
networks, and the development of diagnostic and prognostic models using heterogenous data regarding
critical balance of plant equipment in NPPs [2-7]. The previous documents in this series evaluated
potential wireless technologies and communication networks inside NPPs, based on their performance
and economics [2-5]; assessed vibration sensors with wireless capabilities [6]; developed formal
methodologies for cleaning data and objectively comparing ML prognostic models [7]; and development
of condition-based monitoring and preventative-maintenance optimization [8].

In previous reports [7,8], the focus was aimed at the condensate and feedwater system for a boiling
water reactor (BWR). This system contains many interconnected components including condensate
pumps, condensate booster pumps, feedwater heaters, condensers, and more. Three ML models (long
short-term memory networks, support vectors, and random forest) were used to predict future plant
parameters under steady-state operating conditions. With the components being interconnected, their
parameters can interact or be influenced by other components, so feature selection becomes important in
selecting the pertinent plant parameters for making a prediction.

The goal of this report is to demonstrate the expected accuracy and consistency of the developed
short-term forecasting ML methodologies when given new data from different systems. Verification and
validation (V&V) is an important exercise to demonstrate the strength and applicability of research
results. Application of the developed techniques and methodologies from previous research to new,
independent data sets allows for a better understanding on how the models might respond in a new
environment or when formally deployed. This report expands the focus to include both a pressurized
water reactor (PWR) steam generator system and PWR turbine system. One model was not created to
predict each system, but rather, the V&V process focused on how well the methodologies (i.e., data
preprocessing, feature selection, model optimization, and forecasting) could be applied to new data sets.
This report focuses on the V&V of the short-term forecasting models that are tasked with predicting the
component’s future condition that could indicate component’s health given the operating conditions have
not changed, demonstrating the process by evaluating how accurately for two ML models, long short-term
memory neural networks (LSTM) and support vector regression (SVR), perform for three independent
data sets with two different prediction horizons (1 hour and 1 day).

Section 2 discusses the systems of interest and the methodologies used for short-term forecasting.
Section 3 discusses the V&V results — including the differences in the independent data sets, the data
cleaning and preprocessing, and the performance of the short-term forecasting models. Section 4



concludes with a brief summary and details a path forward for future research.

2 SHORT-TERM FORECASTING MODELS

NPPs are interconnected systems composed of many subsystems (e.g., reactor, steam generators,
turbines, etc.) and each of these subsystems are composed of numerous components (e.g., motors, pumps,
pipes, valves, and bearings). Each of these systems and many of their components are being monitored
either through online monitoring or are manually inspected periodically. The type of data collected is
application dependent and may include temperatures, pressures, flows, inches of expansion, gross load,
reactor thermal load and differential pressures. This wide variety of components, sampling frequencies,
data types, and locations throughout the plant leads to a heterogenous source of data that must be handled
appropriately before use both in general and specifically for ML modeling. Data from each subsystem or
set of components may be different and identifying a single set of features for comparing prediction
accuracy is impractical. However, the procedures for data cleaning, feature selection, and forecasting can
be applied to each data set and the overall prediction accuracies can be compared. Then, an expected
prediction accuracy can then be developed based on the data acquired, feature selected, and forecasting
methodology applied. This section covers the three systems of interest used as the data sources in this
study, the feature selection process, and the short-term forecasting models.

2.1 Systems of Interest

For the V&V process, the same methodologies and workflow were performed on three independent
data sets. The first of which came from a boiling water reactor (BWR), while the other two came from
pressurized water reactors (PWR). The specific systems of interest include a boiling water reactor’s
condensate and condensate booster pump, a pressurized water reactor’s steam generator feedpump, and
another pressurized water reactor’s main turbine. The fundamentals of each component and the specific
signals recorded are explained below.

2.1.1 BWR Condensate and Condensate Booster Pumps

Condensate and condensate booster pumps are found with the condensate and feedwater system. The
primary purpose of this system is to condense steam and collect the drainage in the main condenser before
purifying, preheating, and pumping the water back to the reactor vessel [9]. The condensate pumps
provide the driving force for pushing the condensate through auxiliary systems such as the steam jet air
ejectors condenser, steam packing exhaust condenser, off-gas condenser, and demineralizers - all of
which work to condition the condensate. Afterwards, the condensate booster pumps are the driving force
of the flow as the condensate travels through a string of low-pressure heaters that work to preheat the
water to the correct temperature. In the BWR system of interest, the condensate and condensate booster
are driven by a shared motor.

2.1.2 PWR Steam Generator Feedpump

In a PWR system, the primary coolant flows from the reactor to the steam generator to transfer its
thermal energy to the secondary coolant through many tubes [10]. With sufficient heat, the secondary
coolant starts to boil into steam before being sent to the turbine system. The steam generator feedpump is
what supplies the driving force for the secondary side’s coolant to flow through the steam generator.

2.1.3 PWR Turbine

In a PWR system, the steam formed in the steam generator is passed to the main turbine generator
where it is used to make electricity [10]. The steam is then directed to low pressure turbines before being
routed to the main condenser. Throughout this process, the steam is piped through moisture separators
and reheaters (MSRs). The MSRs dry and reheat the steam to prevent potential turbine damage due to the
moisture content of the steam while also improving the efficiency of the turbine.



2.2 Feature Selection

The same data cleaning and feature selection techniques were used for each dataset to create a fair
basis for comparison. The data cleaning process is discussed in detail in Section 3.2 along with the
discussion of the recorded process parameters. The primary technique used for feature selection was the
Shapley additive explanations (SHAP) approach.

SHAP has been used to improve model interpretability, but it can also identify important variables by
how they contribute to the ML model output [11,12]. SHAP is classified as an additive feature attribution
method, which means the output of the model is a linear addition of the inputs as seen in Equation 1,

where f(x) is the original model, g(x’) is the explanation model, ¢, represents the model’s baseline
estimate, M is the number of input variables, is the feature attribution values, and are the input variables
themselves [13]. The baseline, ¢, is determined by averaging over all predictions for a given model [14].
The SHAP approach uses a method akin to game theory to estimate the feature attribution values. Input
variables are grouped, and the models are trained. By doing this in several different combinations, the
influence of each variable over the model’s output can be determined. Input features that contribute more
to the model’s output have larger feature attribution values associated with them. In this way, the feature
attribution values are related to the feature’s importance as larger attribution values (either positive or
negative) will lead to larger changes in the model’s output. The feature attribution values can be
approximated through a variety of methods depending on the model being use, such as Kernel SHAP for
support vector machines, Deep SHAP for deep learning techniques, and Tree SHAP for decision trees
[11]. Feature selection is made by retaining only variables with larger attribution values and discarding
those associated with smaller attribution values. One of the drawbacks with the SHAP method is the
computational load that expands depending on both the type of explanation model (e.g., Tree, Kernel, or
Deep SHAP) and the number of variables being analyzed. It could be useful to reduce the number of
variables with correlation analysis before implementing the SHAP method to reduce redundant variables.

2.3 Short-term Forecasting Models Selected

Two models were selected for short-term forecasting based on previous performances [6]. These
models were the Long Short-Term Memory (LSTM) neural network and Support Vector Regression
(SVR).

2.3.1 Long Short-Term Memory Networks

LSTMs are a recurrent-type neural networks that were specifically designed to learn and encode the
long-term relationships between the inputs and outputs through via unique memory cells that. These
memory cells store, within the network, a hidden state within the network that interacts with the current
input. The memory, or stored state, is updated as new inputs become available. A “forget” gate within the
network determines which information to forget from the previous memory cell during the next iteration
as a hidden output, which improves performance. LSTMs excel at utilizing temporal information to
determine long-term relationships between the input and outputs. For more illustration on the construction
and implementation of LSTMs, a guide has been provided by Greff [15].

2.3.2 Support Vector Regression

SVR is a kernel-based regression technique that makes estimations based on a selected subset of
training data called support vectors. Support vectors are chosen based on a kernel function and an
optimization routine. The kernel function first transforms the data into a higher-dimensional space so that
the relationship between variables is assumed to be linear. Commonly used kernel functions include radial
basis functions, polynomial, and sigmoidal functions. The goal of the optimization routine is to then find
a hyperplane that minimizes generalization errors, which is the sum of the training error and the
confidence level. SVR is unlike other regression techniques as training data within a selected tolerance
(epsilon-tube) does not penalize the loss function during optimization. The training data that lies closest to



the hyperplane is then selected as the support vectors. A more detailed guide to SVR was provided by
Smola [16].

2.4 Multi-step Forecasting

The simplest forecast is one-step ahead since it represents the least amount of extrapolation from the
known data. Intuitively, we expect better results as there are fewer opportunities for unseen transients,
depending on the size of the step. The 24-hour ahead predictions in the previous report [7] were created
using one-step ahead predictions. This was accomplished by resampling the data so that each time step
was 24 hours apart rather than the original 1-hour frequency. This method yielded acceptable results for
that dataset, primarily due to the amount of data available — 5 years’ worth. However, the other two V&V
datasets discussed in this report only contain a year’s worth of data. By resampling the data from an
hourly to daily, and then further dividing the data into training, testing, and validation sets, the V&V
dataset becomes sparse for learning trends. This resampling strategy is therefore inappropriate for these
datasets. With limited data, each point is critical for training the model. Several methods for making
multi-step ahead time-series predictions were tested to see the optimal strategy for forecasting. These
prediction strategies include direct multi-step forecasting, recursive multi-step forecasting, and direct-
recursive hybrid multi-step forecasting [18]. These methods are discussed in further detail in the
subsections below.

2.4.1 Direct Multi-step Forecasting

The first method for making predictions that are multiple time steps ahead is direct multi-step
forecasting method. In this method, the model is trained to directly predict a set time into the future. This
method is similar in appearance to a one-step ahead prediction, but with an increased prediction horizon.
Equation 2 shows an example of a one-step ahead model,

where a model uses the previously observed data, x;, X¢1, ..., X¢.,, to make a prediction that is a single time
step ahead, X1, and n is the number of previously observed time steps to be inputted into the model. In
direct multi-step forecasting, this prediction horizon of one-time step is extended to the desired length.
Equation 3 shows an example of a model predicting two-steps ahead with the same previously observed
data as Equation 2. The difference between equation 2 and 3 is the model’s predicted outcome (X
compared to X;) due to the extended prediction horizon.

This prediction horizon can be extended further. In this report, hourly recorded data were used to
predict component measurements twenty-four time steps, or one day ahead. However, there are
limitations to this technique. Extending the prediction horizon will, in most cases, diminish the accuracy
of the predictions. For this type of model, there is no opportunity for the model to learn the dependencies
between forecasted predictions. As one variable changes, it may directly affect another, since this type of
model might overlook this type of interaction as it directly predicts future values.

Similarly, a direct, multi-output, multi-step forecast casting strategy can be implemented in which one
model attempts to predict each consecutive future step, as seen in Equation 4.

This type of model will have similar or exacerbated drawbacks as direct multi-step forecasting due to the
additional predicted outputs. This will likely lead to a more complex model that will require more time to
train as well as more data to prevent overfitting. So as an overview: Model 1, in equation 2, attempts to
predict one-step ahead; model 2, in equation 3, attempts to predict 2 steps ahead using the same inputs as
model 1; and model 3 tries to predict both the one- and two-steps ahead while still using the same input
parameters.



2.4.2 Recursive Multi-step Forecasting

Another method for making multi-step ahead predictions is recursive multi-step forecasting, which
entails a single model that makes one-step ahead predictions. After a prediction is made, the input
window is shifted by one step, and the model’s own prediction is used as one of the inputs. This process
of recursively using the model’s output as an input is repeated until the desired prediction horizon is
reached. Equation 5 and 6 shows a single step in the recursive multi-step forecasting process. In Equation
5, modell makes a single one-step ahead prediction, X ). This prediction is then fed back into itself, as
seen in Equation 6, as modell is then used to make another one-step ahead prediction, X2).

This model has some disadvantages, namely, the accumulation of prediction errors. There will
inevitably be some prediction error between the predicted output of Equation 5 and the ground truth. This
error is then inserted into the model again in Equation 6, where the error can increase the deviations from
the ground truth, thus accumulating predicting errors. Longer prediction horizons lead to more
accumulation of errors.

2.4.3 Direct-Recursive Hybrid Multi-Step Forecasting

Direct-recursive hybrid (DirRec) multi-step forecasting is a combination of direct and recursive forms
of prediction to mitigate the disadvantages from each method. In DirRec multi-step forecasting, several
models are trained, each with a minimal prediction horizon. However, the prediction from one model is
then fed as an input to another model that makes the same length prediction. In this way, a series of
models are used in succession to extend the prediction horizon. The first model, seen in Equation 7, is
used to predict a single step ahead, X(1). This prediction is then used as an input for model 4, seen in
Equation 8, which is used to make another single step ahead prediction, X).

This approach aims to minimize the disadvantages from both the direct and recursive approaches.
With a series of models, the dependencies between predicted outcomes can be observed, thus reducing the
disadvantage of direct approaches. With multiple models being created, there is also an opportunity to
correct some of the accumulating errors that one specific model could make, thus reducing the recursive
model drawbacks. However, creating numerous models can be computationally expensive to train. With
each model making one-step (one hour) ahead predictions, twenty-four models would need to be trained
to estimate one day in advance.

In this report, the recursive multi-step forecasting method had prohibitively large accumulations of
prediction errors. And although the DirRec multi-step forecasting method avoided such error
accumulation, the training of multiple models became computationally expensive. A sample case from
each forecasting method is shown in the Section 3.3 to demonstrate its forecasting ability. The direct
multi-step forecasting method was chosen as the primary method for forecasting in this report due to its
relatively low prediction error and computational expense.

2.4.4 Cross Validation and Model Comparison

Comparisons across independent data sets can indicate how models or methods will respond in new
environments or when they are deployed formally. With the systems of interests and features of the data
sets being so diverse in this report what is primarily being compared is the methodology for generating
predictions based on the raw data. LSTM and SVR models were trained for each dataset then used to
forecast both one-step and twenty-four steps into the future. A ten-fold cross validation technique was
used to resample the data into ten different partitions. One partition was withheld at a time, while the
remaining nine were used for training and validation. The withheld partition was then used for testing to



evaluate the model’s performance on an unseen set of data. The models would then be evaluated on its
average performance over all iterations. With the data processing, feature selection, and model creation
being the same for each data set, the cross-validation results should provide insight into how this
methodology might respond to new environments.

3 VERIFICATION AND VALIDATION RESULTS

This section provides an overview of the results achieved when applying the specific methodology
described above to the operational data from three different NPP subsystems. The primary objective is to
analyze and compare the capabilities and limitations of the data-driven, short-term forecasting models as
they predict future plant data one- or multiple-time steps into the future. Each data set undergoes the same
set of data processing and feature selection before predictions are made using LSTM and SVR models.
The relative accuracy of each model, as determined using ten-fold cross validation, is compared for each
dataset.

3.1 Data Description

The available process data comes from three different subsystems within three separate NPPs. These
systems include a feedwater and condensate system (FWCS) of a BWR, a steam generator feedpump
from a PWR, and a PWR main turbine and each varied in the amount of data collected on them, the
sensors used, and the overall operating conditions.

3.1.1 BWR Condensate and Condensate Booster Pumps
The available process data recorded for FWCS system in the BWR include:
e generator gross load,
e average feedwater flow,
o feedwater pump header and discharge pressures,
e feedwater temperatures,
e condensate and booster pump header and discharge pressures,
e condensate pump motor currents,
e condenser hotwell level,
e turbine exhaust temperatures,
e condensate and booster pump temperatures,
e drive motor temperatures.

This data from the plant historian covers five years’ worth of operation and was downsampled to an
hourly frequency before being provided by the plant. During the five years of operation, there were
multiple planned refueling outages, periods of steady-state operation, reactor trips, and derates of varying
severity. Some maintenance work order information was available, but not enough to determine the cause
of each derate. Discussions with the plant engineers indicated that a majority of the derates were cause by
systems other than the FWCS (i.e., no FWCS failures were seen in any components within the system
during the recorded time period). There was no access to the signals outside of the FWCS system to
investigate those derates further. For this data set, the prediction variable is a bearing temperature inside a
condensate pump within the FWCS system. Bearing temperatures can be indicative of the pump’s
condition.

It is also worth noting that the average plant gross load from this data set differed by about 0.5% - 1%
from one refueling cycle to another. Models trained solely on cycles with similar power outputs produced
less accurate results when tested on cycles with a different power level as those conditions were not



within the training scope. By ensuring sufficient diversity in the training data set, this source of bias was
eliminated.

3.1.2 PWR Steam Generator Feedpump
The available process data for the PWR steam generator system includes:

e the suction and discharge pressures,

the feedwater pump speed,

e feedwater pump bearing temperatures,
e feedwater pump oil drain temperatures,
o feedwater heater temperatures,

o feedwater flows,

o the thermal reactor power.

This data was also provided at an hourly frequency. The data covered one operating year during
which there was a refueling outage that lasted for roughly one month. Information on maintenance work
orders is available for this time period, but no degradation related to this subsystem was recorded in the
maintenance work order files. For this dataset, the flow moving through the steam generator feedpump
was predicted. This flow can be used to determine if there are leaks present in the loop.

3.1.3 PWR Turbine
The available process data related to another PWR’s main turbine included:

e the generator gross load,
e pump speeds,
e bearing temperatures,
e oil drain temperatures,
o feedwater flows,
e bearing vibrations,
e turbine eccentricity,
e turbine differential expansions,
e ambient air temperatures.

The available data covered one year’s of steady-state operation with some derates, but no refueling
outages. The information was collected at an hourly frequency, but no associated maintenance work order
information to determine ground truths relating to component condition or cause of derates. For this
PWR, both the main turbine front bearing temperature and the generator’s output were predicted. The
turbine’s condition and the generator output can both be linked to the plant’s performance.

3.2 Data Cleaning and Processing

The time series data for each data set was cleaned, and the features were selected before the data was
separated into steady-state and non-steady-state condition categories. The features in this report are the
plant parameters themselves (i.e. temperature, pressure, etc.). Steady-state conditions consisted of all
plant operations when the reactor’s thermal output was above 90% of its nominal value. Variability could
be seen in the reactor’s thermal output during steady-state operation, but major derates, ramp downs,
trips, and refueling outages were excluded from this analysis.



The first step in cleaning the data was to address all the missing values, most of which corresponded
to when the component was offline. These values remained as is. If the component was online, then the
missing value was most likely recorded due to an error in the sensor or during archival. These missing
values were replaced via interpolation using its nearest neighbors. Other missing values were seen with
daylight savings time as periods of time were “skipped” once per year. These times were filled in as with
the previous values.

The second step is to address any outliers found within the data. Outliers were selected based on
being four standard deviations away from the average. Many of the signals are heavily skewed in one
direction during steady-state operation, so three standard deviation flagged as much as 1% of the data,
which seemed high. Four standard deviations flagged the number of outliers to be about 0.3% of the data.
These outliers were then replaced with a median filter of size 51, which corresponds to just over 2 days’
worth of data. It is assumed that these outliers were not due to operational changes in the plant.

After the data cleaning, the variables were scaled to a standard normal distribution with a zero mean
and unit standard deviation. Features for each model were then selected based off their feature importance
using SHAP values. The feature importances were calculated as the mean SHAP values for their
respective variables. A set threshold for feature importance was not selected, but rather a dynamic one.
Features within an order of magnitude of the largest feature importance value were selected as input
variables. For example, in Table 1, when selecting input variables to predict bearing vibration, excluding
the vibration signal itself, the largest feature importance is the turbine speed with a value of 0.608. This
feature being the most important is logical because a higher speed can subsequently lead to higher levels
of vibrations as the system is worked harder. The final value shown in Table 1 is the turbine shell
expansion with a value of 0.029. This value is more than one order of magnitude away from the highest
value, so the shell expansion and all variables with lower feature importance values were excluded as
model inputs.

Table 1: Feature selection for predicting bearing vibration based on SHAP importance values.

Feature Importance
Turbine Speed 0.608
Turbine Rotor Expansion 0.309
Turbine Differential Expansion 0.161
Flow to Turbine 0.151
Shell Expansion 0.029

The variables included in this analysis as they had the largest SHAP values are shown in Table 2.
Many variables are relatively slow moving in time (e.g., temperature), so it is advantageous for the model
to know the variable’s value at previous time steps. Input variables used to forecast the main turbine
thrust bearing temperature include the temperatures of other bearing that were in close physical proximity
to itself. To predict generator output, the other input variables included flow to the feedwater pump’s
turbine (FWPT), the feedwater pump (FDWP) bearing temperature, and the turbine’s shell expansion.
Flow to the FWPT had a negative correlation to generator output. As more flow was redirected to the
FWPT, less output from the generator was seen. However, generator output had a positive correlation
with both the FDWP bearing temperature and the turbine shell expansion. As the generator output
increased, similar increases were seen in the bearing temperature and shell expansion as the system ran
harder and hotter. To predict steam generator feed flow, the other input variables included steam
generator (SG) flow from the other loop, the steam generator feed pump (SGFP) bearing temperature, and
the feedwater (FW) heater outlet temperature. The condensate pump temperature just required itself and
another condensate pump bearing temperature as input variables.



Table 2: List of predicted variables and the variables used to predict them as selected based on their

SHAP values.

Variable Predicted

Other Input Variables

Main Turbine Thrust
Bearing Temperature

Front Thrust Bearing Temp

Rear Thrust Bearing
Temp

Generator Output Flow to FWPT FDWP Bearing Temp Turbine §he|l
Expansion
Steam Generator Feed 5G flow loop 2 SGFP Bearing Temp FW Heater outlet
Flow Temp
Condensate Pump Condensate Pump 2 Bearing
Temperature Temp

3.3 Short-term Forecasting Model Performance

This report focuses on how well LSTM and SVR predicted plant process data sets over two prediction
horizons (1 hour and 1 day). Three different multi-step approaches were tested for the main turbine thrust
bearing temperature to determine which approach would be used for all other predictions. The direct,
recursive, and DirRec multi-step approaches were used to estimate the bearing’s temperature 24-steps into
the future using the LSTM model, and the results were compared using the root mean square error
(RMSE) in the prediction as calculated in Equation 9,

where N is the total number of predictions, is the model's predicted output, and is the observed output.



The direct, recursive, and DirRec multi-step approaches produced RMSE’s of 0.294, 4.816, and 0.301
for the anonymized bearing temperature dataset, respectively. For this model, the recursive method results
that that were considered poor due to the much larger RMSE than seen for the other two methods. This
larger RMSE was due to the accumulation of prediction error while recursively looping the output from
the one-step ahead model back into the input. The predictions using the direct and direct-recursive
methods on the anonymized temperature data can be seen in Figure 1. The direct method, seen in green,
more closely follows the peaks as the temperature of the bearing oscillates. The cause of this oscillation,
which is on the order of 1-2 degrees Celsius, is unknown due to a lack of information on how the unit was
operated or if the system had any underlying conditions. Although the DirRec method had comparable
results, the direct method was chosen based on having the lowest RMSE and was used for the remaining
of the V&V process.
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Figure 1: Comparison on direct versus direct-recursive forecasting strategies.

The hyperparameters for LSTM are important components that help determine the quality of the
model's predictions. Optimal LSTM hyperparameters were identified using a grid search method using
the BWR’s condensate pump bearing temperature data set, and the best results for the hyperparameters
were used for all subsequent LSTMs. The chosen hyperparameters can be found in Table 3. The model
was trained for a maximum of 250 epochs or until the validation loss did not improve for 6 epochs. Early
stoppage of training was used to prevent overfitting the model to the training data. The dropout layer and
L1 & L2 regularizers were all added to improve the LSTM's robustness by reducing overfitting. Only a
single LSTM layer was used in this model.

Table 3: Optimal hyperparameters used for the LSTM models.

Hyperparameter Value
Number of units 1000
Batch size 64
Epochs up to 250
Dropout 20%
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Validation split 10%
Optimizer Adam
L1 & L2 regularizer 1.0E-05

LSTM and SVR were used make one-hour (i.e. one step) and one-day (i.e. 24 step) ahead predictions
Data from three different nuclear plants (i.e., PWR 1, PWR 2, and BWR). PWR 1°s and PWR 2’s data
sets contained one-year of data, while the BWR’s data set contained five-years of data. The mean of the
RMSEs from the cross-validation approach demonstrates the expected accuracy of the modelling method
when used to make predictions. The RMSE’s means and standard deviations from the LSTM and SVR
models for the one-hour ahead and one-day predictions are shown in Table 4.

Table 4: 1-hour and 1-day ahead predictions for both LSTM and SVR.

Data set 1-step ahead 24-steps ahead

Mean Std Mean Std
Plant Parameter Predicted Model RMSE Error RMSE Error
LSTM 0.0796 0.0411 0.7932 | 0.5450
PWR 1 Main Turbine Bearing Temp SVR 0.0214 0.0080 0.3194 0.1202
LSTM 0.2871 0.2031 2.2636 | 2.8338
PWR 1 Generator Output SVR 0.0806 0.0422 1.5611 1.2424
LSTM 2.4792 3.0455 12.435 17.333
PWR 2 Steam generator flow SVR 1.4070 2.4270 5.6299 5.3154
LSTM 0.0792 0.0722 0.2991 | 0.2724
BWR Condensate Pump Bearing Temp SVR 0.0323 0.0496 0.2238 0.2184

In Table 4, the RMSEs were calculated after converting the predictions back to their respective
engineering unit of measurement. Temperatures were captured in Celsius, generator output in megawatts,
and steam generator flow in thousands of gallons per minute. The first point of comparison comes
between the prediction accuracy of the SVR compared to the LSTM. In each dataset, the SVR
outperformed the LSTM. This may be due to how each model was optimized. SVR has a convex
optimization, so choosing the optimal hyperparameters (i.e., regularization parameter, epsilon-tube, and
kernel coefficient) can be done efficiently. For LSTM, there are many hyperparameters to consider, some
of which are listed in Table 3, which makes the optimization more difficult and computationally
expensive. After the hyperparameters are chosen, the LSTM model still must be trained to the data set of
interest. In this report, the optimal hyperparameters were found for one data set then applied to each other
data set. The BWR condensate pump bearing temperature data set, in which the LSTM hyperparameters
were optimized, had the closest results, in terms of mean RMSE, to the SVR out of all the data sets. This
suggests that further improvements may be seen if the optimal architecture was selected for each LSTM
with each new data set.

Comparing results within Table 4, there is a trend that predicting 24-steps ahead performs worse than
predicting 1-step ahead. This logical as more events and transients can occur over a longer prediction
horizon, which makes the forecasting more difficult. Another trend that can sometimes be seen is a lag in
the 24-step forecasts, as seen in Figure 2. The 1-step ahead predictions for both the LSTM and SVR seem
to trend well with the actual measurements; however, the 24-step ahead predictions produce a noticeable
delay. The predictions mimic the same patterns as the temperature fluctuations but does not accurately
predict them as they occur. This is most likely due to a lack of predictor information that would inform
the model of the cause of these one-to-two-degree fluctuations that appeared to oscillate over a two-week
period. The source of the fluctuations was not determined due to a lack information such as operating or
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maintenance logs. With derates being removed, the 24-step ahead model was still expected to predict 24-
steps ahead even though this no longer corresponded to the original 24-hour intent. This could be one
cause of the inflated mean RMSE values.
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Figure 2: Forecasting the main turbine thrust bearing temperature using LSTM and SVR for both one-
and 24-steps-ahead predictions.

Another interesting comparison can be seen within the LSTM’s prediction of PWR 1’s main turbine
bearing temperature from 1-step to 24-step when compared to the LSTM’s prediction of BWR’s
condensate pump bearing temperature from 1-step to 24-step. The mean RMSEs for both 1-step ahead
predictions are very close to one another with 0.0796 and 0.0792, respectively. However, the 24-step
ahead predictions deviate significantly with mean RMSEs of 0.7932 and 0.2991, respectively. The
difference seen between the 24-hour prediction mean RMSEs can most likely be attributed to the
increased amount of data that the BWR data set had (5 years versus 1 year) that yielded an increase in the
prediction accuracy. Although the LSTM still did not beat the SVR in the overall accuracy, the LSTM did
see a bigger improvement when moving from 1-step to 24-step ahead predictions for this variable.
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Figure 3: Anonymized steam generator flow and time that shows a significant derate at 2009-11 and an
outage at 2010-03.

For both the models and prediction horizons in Table 4, the RMSE standard deviation for PWR 2’s
flow predictions are large. This is due to the fact that two separate sections of the flow data, which is
experiencing abnormal behavior, shown in Figure 3 where the y-axis was anonymized, and the x-axis was
shifted to protect the plant’s identity. In Figure 3, the first large deviation can be seen at time 2009-11.
This was a large reduction in the flow that occurred when the thermal power of the reactor was above
90%. The other section of abnormal behavior occurred around 2010-02, where the reactor was being to
ramp down toward a regularly scheduled outage that lasted through 2010-03. The flow appears to linearly
increase in a strict fashion. Each of these sections were poorly predicted as their behavior were not
captured in the training data. With these two, operational anomalies present, the mean RMSE for the SVR
24-step ahead prediction was 5.629. After removing these outliers from the testing data, the mean RMSE
was reduced to 1.744. In the data cleaning process, each of these abnormal sections were missed. The
large derate in flow remained within 3 standard deviations, and the linearly increasing section occurred
while the reactor thermal power was above 90%.

Overall, each model predicted performed well based on the new data sets. However, as seen with the
two flow outliers, data-driven models can only effectively be relied on to predict activity that has been
seen within the training data set. The model performance can be improved by supplementing the training
set with more information if available, although unfortunately, this is rarely the case.

4 SUMMARY AND PATH FORWARD

This report demonstrated the expected accuracy and consistency of short-term forecasting ML models
when given new data from different systems. Prognostic and short-term forecasting models are a key
enabling technology that can be used to reduce O&M costs by enabling condition-based predictive
maintenance. This research showed that a model’s prediction accuracy depends on several factors,
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including the model’s architecture, the prediction horizon, and the training data set itself. Each ML model
needs to be optimized in some way to the data set of interest as the model’s performance directly relies
upon it. SVRs have fewer hyperparameters than LSTMs, which makes it less computationally expensive
to optimize. This research also showed that model performance degraded as the prediction horizon
increased. In addition. this research showed the importance of having a representative training set. When
the plant experiences transients not within the data set, as seen in the PWR 2 flow predictions, the model
cannot be relied on to predict these unseen transients accurately. The analysis in this report only covered
operating conditions at steady-state conditions as defined by the reactor’s thermal power. There is a need
to expand this work to non-steady-state operating conditions in order to cover the full range of the
reactor’s operating life cycle (i.e., derates, trips, and ramp downs towards outages). During these transient
operating conditions, the system is still vulnerable to degradation and the knowledge of critical operating
equipment’s future condition is essential for enabling predictive maintenance.

This report also described the SHAP feature importance values for selecting a representative data set
based on the feature importance. There are other feature selection techniques (i.e., filter, wrapper, and
embedded methods [17]) and dimensionality-reduction methods (e.g., principal component analysis) that
should be explored to see if an optimal input variable space can be developed. Feature importance values
can potentially determine the features that contribute the most when predicting future plant parameters.
This could incredibly useful when predicting certain parameters, such as gross load. In the results section,
LPE flow was one of the major influencers for forecasting gross load. As low-pressure steam is exported
to other areas of the plant, the gross load is reduced. With a wide array of sensors across many
components and systems, new critical components can be determined based on how they influence other
system parameters. These components would also then need to be analyzed by subject matter experts to
determine the extent of the causal relationship.
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